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GSI: Tom Griffin

Homework 9 Solutions

1. From equation 12.94 of the text, the energy levels of the hydrogen atom,
taking into account fine structure and a weak-field Zeeman splitting, are
|n, l, j,mj > with energy:

E = −13.6eV

n2
[1 +

α2

n2
(

n

j + 1/2
− 3

4
)] + µBBgJmj

where gJ = 1+
j(j + 1)− l(l + 1) + 3/4

2j(j + 1)
. So in this case the eight n=2 states

get split into (labeling the states by |n, l, j,mj >):

|2, 0, 1/2, 1/2 > E = −13.6eV
4

[1 + 5α2

16
] + µBB

|2, 0, 1/2,−1/2 > E = −13.6eV
4

[1 + 5α2

16
]− µBB

|2, 1, 1/2, 1/2 > E = −13.6eV
4

[1 + 5α2

16
] + µBB/3

|2, 1, 1/2,−1/2 > E = −13.6eV
4

[1 + 5α2

16
]− µBB/3

|2, 1, 3/2, 3/2 > E = −13.6eV
4

[1 + α2

16
] + 2µBB

|2, 1, 3/2, 1/2 > E = −13.6eV
4

[1 + α2

16
] + 2µBB/3

|2, 1, 3/2,−1/2 > E = −13.6eV
4

[1 + α2

16
]− 2µBB/3

|2, 1, 3/2,−3/2 > E = −13.6eV
4

[1 + α2

16
]− 2µBB
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2. In this case the magnetic field splitting dominates and we can ignore the
fine structure. Therefore |n, l,ml,ms > are the eigenstates with energy E =
−13.6eV

n2 + µBB(ml + 2ms) (see equation 12.86 of the text). So labeling the
states by |n, l,ml,ms >, we have:

|2, 0, 0, 1/2 > E = −13.6eV
4

+ µBB

|2, 0, 0,−1/2 > E = −13.6eV
4
− µBB

|2, 1, 1, 1/2 > E = −13.6eV
4

+ 2µBB

|2, 1, 1,−1/2 > E = −13.6eV
4

|2, 1, 0, 1/2 > E = −13.6eV
4

+ µBB

|2, 1, 0,−1/2 > E = −13.6eV
4
− µBB

|2, 1,−1, 1/2 > E = −13.6eV
4

|2, 1,−1,−1/2 > E = −13.6eV
4
− 2µBB

3. In the scattering problem, the wavefunction satisfies Schrodinger’s equation
for a free particle, (∆2 +k2)|ψ >= 0 as r →∞. The incident wave is a plane
wave and the scattered wave is a spherical wave multiplied by an arbitrary
function of θ, f(θ).

In one dimension Schrodinger’s equation in terms of r = |x| becomes (for a
spherical wave that depends only on r):

(
d2

dr2
+ k2)ψsph(r) = 0

This has solution ψsph(r) = eikr and so the wavefunction for the scattering
process is: ψ(r, θ := sign(x)) = A{eikx + f(θ)eikr}.
In two dimensions Schrodinger’s equation in terms of r =

√
x2 + y2 becomes

(for a spherical wave that depends only on r):
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) + k2)ψsph(r) = 0
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Try a has solution of the form ψsph(r) =
eikr

rn
:
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≈ −(2n− 1)ik
eikr

rn+1
for large r >> 1/k

which vanishes if n = 1/2. So the analogous wave function in 2 dimensions

is ψ(r, θ) = A{eikx + f(θ)
eikr

r1/2
}.

4. (a) The number of particles scattered per unit area per unit time is:

Ñ = nN = nΦ
dσ

dΩ
dΩ

So the fraction of particles scattered into an angle dθ is:

Ñ

Φ
= n

dσ

dΩ
dΩ

= n(
qQ

4E
)2

1

sin4(θ/2)
(2π|d(cos θ)|)

= n(
qQ

4E
)2

sin θ

sin4(θ/2)
(2πdθ)

(b) n = density × thickness × N0/A = 5.9 × 1022 atoms/m2. Substituting
this value into the above equation and using Q = 79e, q = 2e, θ = π/2
and E = 5MeV we get that the fraction of atoms scattered into the
cone is 1.9× 10−4dθ

5. Starting with the equation:

Rl →
1

kr
[Bl sin(kr − lπ/2)− Cl cos(kr − lπ/2)]
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Then if we define Al := (B2
l +C2

l )1/2 and δl := − tan−1[Cl/Bl] then by basic
trigonometry, Bl = Al cos(δl) and Cl = −Al sin(δl) and so

Bl sin(kr − lπ/2)− Cl cos(kr − lπ/2) = Al(cos(δl) sin(kr − lπ/2) + sin(δl) cos(kr − lπ/2))

= Al(sin(kr)− lπ/2 + δl)

which gives equation 13.40 of the text.

6. By substituting equations 13.34, 13.35, 13.46 of the text into 13.44, we get
that

∞∑
l=0

Rl(k, r)Pl(cos θ) →
∞∑
l=0

{(2l + 1)il(kr)−1 sin(kr − lπ/2) + r−1 exp ikrfl(k)}Pl(cos θ)

Multiplying both sides of the above by Pl′(cos θ) sin θ and integrating over
0 < θ < π, and using the orthogonality relation

∫ π
0
Pl′(cos θ)Pl(cos θ) sin θdθ =

2
2l+1

δll′ we get that

Rl(k, r) → (2l + 1)il(kr)−1 sin(kr − lπ/2) + r−1 exp ikrfl(k)

→ {(2l + 1)il(kr)−1 + r−1 exp(ilπ/2)fl(k)} sin(kr − lπ/2)

+ir−1 exp(ilπ/2)fl(k) cos(kr − lπ/2)

So, by comparing with 13.40 we have:

Bl(k) = (2l + 1)il + k exp(ilπ/2)fl(k)

Cl(k) = −ik exp(ilπ/2)fl(k)

and therefore:

Al := (B2
l + C2

l )1/2 = Bl(k) = (2l + 1)il + k exp(ilπ/2)fl(k)

Cl(k) = −ik exp(ilπ/2)fl(k)

From here it is a trivial but tedious algebraic exercise to obtain 13.48.
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